(7y^2-y-6)=-(4y^2-3y+2)

Simple and best practice solution for (7y^2-y-6)=-(4y^2-3y+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7y^2-y-6)=-(4y^2-3y+2) equation:



(7y^2-y-6)=-(4y^2-3y+2)
We move all terms to the left:
(7y^2-y-6)-(-(4y^2-3y+2))=0
We get rid of parentheses
7y^2-y-(-(4y^2-3y+2))-6=0
We calculate terms in parentheses: -(-(4y^2-3y+2)), so:
-(4y^2-3y+2)
We get rid of parentheses
-4y^2+3y-2
Back to the equation:
-(-4y^2+3y-2)
We add all the numbers together, and all the variables
7y^2-(-4y^2+3y-2)-1y-6=0
We get rid of parentheses
7y^2+4y^2-3y-1y+2-6=0
We add all the numbers together, and all the variables
11y^2-4y-4=0
a = 11; b = -4; c = -4;
Δ = b2-4ac
Δ = -42-4·11·(-4)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8\sqrt{3}}{2*11}=\frac{4-8\sqrt{3}}{22} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8\sqrt{3}}{2*11}=\frac{4+8\sqrt{3}}{22} $

See similar equations:

| 3/4x=6/16 | | 3x1=6x+5 | | 2(w+2)=7w-1 | | 5x+20=800 | | 7x=(17*13) | | n^2-n-0.2=0 | | 5y(y-4)=7(2y+1) | | 43,650+(100x)=45,450+(125x) | | k-12=30 | | -9v-49=5(v+7) | | 2x+3(x-7)=-44 | | 7(3k-1)-(k+5)=-52 | | 5000x-7000=43000 | | .9x=57 | | 28=7+c | | 11x+8=12x+12 | | 2x+86-1.8x=130 | | 892=n-7 | | -3t=33 | | -4+4(1+2x)=4)x-1) | | k-53=153 | | 8=a.6 | | -108=b/9 | | 4k^2-16k-8=0 | | (B+15)+2b+2b=180 | | 4x-(x-4,1)=-0,7+2,2x | | 4s-50+31=s+46 | | 10-5x=27-9x | | x2(x+7)=22 | | 7(v+2)+5v=38 | | x-5.2=118.73 | | 9h=10h−8 |

Equations solver categories